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In this appendix, we assess the robustness of the results by checking fundamental
assumptions of the model. As a first point, we provide evidence that the sampled
distribution has converged while in the second half we experiment with a diverse range
of specifications to test the stability and validity of our findings.

1 Convergence

In this section we discuss the convergence of the reference model (Model I). A theoretical
property of MCMC is that — independently from the starting values or complexity of the
model — the distribution of MCMC chains are bound to converge on the target distribu-
tion after an infinite number of iterations. However, as the number of feasible iterations
is finite, the question of whether or not the estimation has converged is fundamental to
statistical inference.

Table 1 reports a series of statistics that are used to assess the convergence of the
chains. The first three columns present the mean, median and mode of the marginal
posterior distributions. In MCMC estimation all of these measures are commonly used
for inference. The matching of median, mean and mode hints to the fact that the
generated samples are normally distributed and suggest that the Markow Chains have
converged. For all of the parameters of the model the mean, median and mode converged
toward the same value lending a case in favour of convergence. The only exceptions
being the variance parameters of the treaty and country effects. As a matter of fact, the
posterior distribution of variance parameters is typically right skewed as illustrated by
the histograms in figure 1. The value of the median is comprised between the mean and
the mode due to the light skewness in the distribution.

The effective sample size (ESS) is one of the most popular statistics to assess the
efficiency of the sampling algorithm. It quantifies the number of independent samples
generated during estimation. A higher ESS indicates that the samples are less correlated.
Unfortunately, multilevel models for survival data are complicated to estimate, as chains
are highly correlated and typically do not mix well (Steele et al., 2004). We follow the
advice of Browne et al. (2009) and use orthogonal parametrisation which considerably
improves chain mixing. Given the type of data, we obtain a reasonable ESS. Regional
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Figure 1: Marginal posterior distributions

Notes: Histograms for the distributions of the 24 chains of model I. The densities of MCMC
chains are estimates of the marginal posterior distributions. As expected, the parameters
of the model are normally distributed while the variance parameters are slightly skewed,
with a longer right-tale.
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Figure 2: Parameter traces for model I

Notes: The traces illustrate the last 20,000 iterations of the MCMC estimation. They
are commonly used to assess convergence and mixing of the chains. Traces that look like
white noise processes indicate that the sampling algorithm moves efficiently through the
distribution and that the chains have converged around a high probability region.
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Table 1: Convergence statistics for model I

Mean Median Mode ESS RL 2.5% RL 97.5% BD

ENGO 0.021 0.021 0.021 7712 34 890 36 648 12 792
ResourceRent 0.004 0.004 0.005 22 193 40 824 40 880 180 932
Institutions 0.098 0.098 0.098 18 287 42 696 45 664 366 395
ENGO.Institutions −0.008 −0.008 −0.008 8870 34 570 36 038 535 418
Resourcerent.Institutions 0.003 0.003 0.003 25 073 41 272 39 856 108 403
logIncome 0.207 0.207 0.208 22 457 41 736 41 968 32 477
logIncome2 −0.011 −0.011 −0.011 22 714 42 664 42 824 12 551
FreedomHouseCL −0.129 −0.129 −0.129 24 221 24 342 23 462 480
ThreatenedSpecies 0.590 0.589 0.587 8147 36 246 37 898 675 411
logForest 0.055 0.055 0.055 7842 41 578 40 772 92 843
RatRegion 0.590 0.590 0.591 47 753 33 800 33 808 2790
RatUS −0.714 −0.714 −0.714 18 307 43 784 43 368 6558
RatChina 0.361 0.361 0.361 33 000 37 656 34 504 3479
RatRussia −0.199 −0.199 −0.198 18 056 25 222 25 426 30 591
RatIndia 0.254 0.254 0.253 39 846 34 608 34 784 2810
RatGermany 0.325 0.325 0.324 33 227 38 056 36 792 2732
Regional 0.863 0.862 0.864 533 92 810 119 068 1 231 190
FrameworkAgreement 0.171 0.171 0.169 901 121 388 101 160 1 599 008
t 0.041 0.041 0.041 37 539 35 488 35 608 7458
t2 −0.006 −0.006 −0.006 34 421 37 144 35 936 2262
t3 0.000 0.000 0.000 36 620 36 728 37 272 4393
cons −5.643 −5.642 −5.644 8968 49 464 50 312 12 949
Variance treaty level (σuj1

) 2.584 2.563 2.537 79 637 31 656 31 856 303

Variance country level (σuj2
) 0.239 0.237 0.235 98 590 30 448 31 136 247

Total iterations 800000 Burnin 300000
Stored Chain length 250000 Thinning 2

Notes: ESS is the Effective Sample Size statistic. ESS assesses the chains on the base of their
correlation. “RL 2.5%” and “RL 97.5%” are the Raftery-Lewis statistics (Raftery & Lewis, 1992)
for the 2.5% and 97.5% percentiles. The Raftery-Lewis statistcs are estimated for a margin of error
of 0.005 with a probability of 95%. “BD” is the Brooks-Draper statistic; it is calculated for k = 2
significant figures and a significance level of α = 0.05.

and FrameworkAgreement exhibit the lowest ESS because of the small amount of
independent observations compared to variables at the country and ratification level.
For Regional and FrameworkAgreement the effective variability is much lower than
for other variables. Since they are not time-varying, the only variability is across treaties.
The actual number of observations is around 250 independent observations. This is much
less than country variables which have approximately 5000 country-year combinations
for the post-1990 period, and even less than variables at the ratification level which can
rely on observations from more than 200000 separate treaty-country-year dyads. Given
the limitations associated with the type of data and the available information on treaties,
we postulate that the ESS results are satisfactory.

Estimation of multilevel survival models with MCMC notoriously yields highly cor-
related chains (Browne et al., 2009). For this reason we opt for a very high number of
iterations. In total we perform almost one million iterations, out of which we discard
one every two samples, for a total of 550000 samples generated. This practice is called
“thinning” and is used to reduce the autocorrelation in the chains. We also choose a
very long burn-in period. In fact, we discard the initial 300000 out of 550000 samples to
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make sure the inference is based on a chain that has converged. Likewise, the number
of iterations has been selected in an overly prudent fashion in order to base inference on
a number of samples that is as large as possible. The large number of samples allows
more precise estimates for the coefficients of the model.

As a supplementary graphical check, in figure 2 we present traces of the last 20000
iterations of the MCMC estimation. These traces show that the chains seem to have
converged around a mean and that they explore efficiently the joint distribution. Healthy
trace plots resemble a white noise process, with a constant mean and variance. We also
notice that Regional and FrameworkAgreement mix less efficiently than other chains,
but well enough considered the available information on treaties. Overall, the traces
seem to indicate that the chains have converged and that the algorithm is mixing well.

Additional diagnostic statistics are reported in the last columns of table 1. The
Raftery & Lewis (1992) statistic gives information on the number of iterations needed to
yield estimates of the 2.5 and 97.5 percentile, which together form an interval containing
95% of the distribution. This statistic is used as a diagnostic to assess convergence and
also measures the precision of quantile estimates from the posterior distribution. The
Raftery-Lewis statistic is known to be conservative and usually suggests more iterations
than necessary (Browne, 2004). If the statistic is satisfied the actual quantile distribution
(0.025,0.975) of the parameter should be less than 1% different from the estimated
probability. All our chains satisfy the Raftery-Lewis diagnostic.

Finally, the Brooks-Draper diagnostic is a statistic for the mean of the posterior
distribution. It estimates the iterations required to achieve estimates of the mean with a
given level of significance and a desired number k of significant figures. In the last column
of table 1 we report the number of iterations needed to quote mean estimates with a
precision of 2 significant figures and a confidence level of 95%. For example, the Brooks-
Draper statistic for the parameter of ENGO implies that 12792 iterations are needed
to express the mean estimate “0.02” with 95% of confidence; we run a total of 800000
iterations, well above the recommended number. The only two parameters for which
the recommended level is not reached are Regional and FrameworkAgreement; again,
given the lower number of independent observations, it is harder to obtain high levels
of precision for these parameters. Nevertheless, if the test is run with k = 1 the chains
satisfy the requirements of the Brooks-Draper diagnostic; in fact, the Brooks-Draper
statistic for FrameworkAgreement is 15991 and 12312 for Regional when k = 1.

To further test the convergence of the chains we follow Gelman & Rubin (1992) who
suggest starting estimation from several different points in order to ensure the algorithm
explores the entire joint distribution. We experiment with 5 different starting points.
The starting values are obtained by multiplying the vector of starting values of Model I
by a scalar taking the values of -1, 0, 2, 3, and 4. The starting values of Model I were
obtained by fitting a simplified version of the model that does not take into account
the cross-classification in random effects with a maximum likelihood method (IGLS)2.
The results are reported in table 2, they display consistent estimates even with different
starting values. Using different starting points allows us to rule out pseudo-convergence
— that is to say, the convergence towards a local point of high probability. This is

2The starting values for the fixed part of Model I are: 0.0171443, 0.0048971, 0.1881271, -0.0116787,
0.0027066, 0.3452093, -0.0196376, -0.0938002, 0.3799708, 0.0635263, 0.432282, -0.7225903, 0.3376975,
-0.299422, 0.1899845, 0.2431447, 0.5060046, 0.2540413, 0.0199538, -0.0041608, 0.0000641, -5.096715.
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particularly dangerous in multimodal distributions.

Overall the Raftery-Lewis and Brooks-Draper diagnostics suggest that we have run
the MCMC simulation for long enough to achieve a stable convergence. Nonetheless, the
estimates for FrameworkAgreement and Regional should be quoted with a lower level
of precision to guarantee the same confidence level. The traces of the chains suggest
that the algorithm is mixing well and explores the distribution with sufficient efficiency.
ESS statistics confirm this conclusion and indicate that the chains have generated a
sample large enough to make a reliable inference. Finally, the graphical representation
of the marginal posterior distributions, as well as the values of mean, median and mode
suggest that the distribution of the chain values has converged to the target distribution.
By using different starting values we rule out the possibility of pseudo-convergence and
ensure that the chains have converged on the point of highest density.

2 Robustness checks

Firstly, we assess the sensitivity of the estimates for the other main variables in the same
way it was done for industrial lobbying. The first four models of table 3 employ different
proxies for environmental lobbying and the quality of institutions in order to evaluate
the consistency of the results when different measurements are used.

The first model replaces the proxy ENGO with ProtectedArea. ProtectedArea is
defined as the percentage of territory that is designated as protected area. We postulate
that when environmental lobbying is more influential it succeeds in providing protection
to a greater territorial area. Like ENGO, ProtectedArea exhibits a positive and signi-
ficant relationship with the hazard of ratification. Countries with higher ProtectedArea
have a higher probability of ratifying environmental agreements. The second proxy for
environmental lobbying is EnvConcern. EnvConcern is the percentage of the popula-
tion that reports being concerned about climate change in a survey conducted in 2008
by Tien et al. (2015) on respondents from 119 different countries. The number of re-
spondents in each countries varies between 500 and 8000. The assumption behind the
use of this variable is that environmental lobbying correlates with the public’s concern
for the environment. This relationship could be affected by cultural and political factors
but, in general, a higher environmental concern should result in stronger environmental
pressure. The estimate for EnvConcern is positive and statistically significant at the
10% level.

Both EnvConcern and ProtectedArea indicate that stronger environmental lob-
bying increases the chances of ratifying environmental agreements. These results are
consistent with those of model I.

We also experiment with two additional indices for the quality of institutions. Institutions2
is the “Government Effectiveness indicator” from the World Governance Indicators
(World Bank, 2017) and Institutions3 is the “Economic Freedom index” by Fraser
Institute (2017). These indicators aggregate several aspects of institutional quality into
one measure and are consistently calculated for a large number of countries and years.
Both indicators are similarly constructed but have been compiled by different organ-
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Figure 3: Comparison of the baseline hazard of model I with a non-parametric definition

Notes: In discrete survival models a way of obtaining non-parametric baseline hazard
function is to use dummy variables for each duration interval. Here, we compare the
non-parametric definition to the cubic polynomial we use in Model I.

isations. They capture several aspects related to the quality of institutions, including:
the efficiency of the bureaucracy, rule of law, protection of property rights, quality of
economic legislation and the extent of corruption in business practices. The results for
these two variables are positive and strongly significant; countries with high scores in
Institutions2 and Institutions3 seem to engage more in international cooperation. We
obtain this result after controlling for other political and economic factors such as the
level of income and the state of democracy. Institutions appear to be a crucial determ-
inant of ratification.

As a further validation of our model, in table 3 we report the estimates of the model
when a different link function and baseline hazard definition are used. Model Logit
shows that the estimates obtained with a logit link are essentially identical to the ones
obtained with a cloglog link function. The next model is estimated with a non-parametric
baseline function instead of a cubic polynomial. In a discrete setting the non-parametric
baseline is derived using dummies for the individual duration periods. As a result,
this approach implies the estimation of a much larger number of parameters, heavily
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Figure 4: P-P plot for the distribution of the treaty and country effect

Notes: The empirical distribution of the treaty and country effects are plotted against
a cumulative normal distribution to check for normality. Both distributions follow very
closely the diagonal line, suggesting normality in both treaty and country random effects.

affecting both the estimation time and convergence speed of the parameter chains. The
estimates of the model have all the same sign and are very close to the ones in model
I. The only differences are a slightly lower coefficient for Institutions and a slightly
higher ResourceRent. The increase in Resourcerent makes the variable significant at
the 10% level of significance. The other estimates do not substantially change from the
results in other models. In figure 3 we compare the non-parametric baseline hazard
with the baseline hazard in model I. The cubic polynomial seems to be a reasonable
approximation of the non-parametric version and does not seem to distort the final
results. Hence, In model I we opt for the more parsimonious cubic polynomial. The
vast gains in estimation time make it a worthwhile simplification and — despite being
less versatile than the non-parametric definition — we deem the cubic polynomial is
sufficiently accurate.

Finally, in the last column we present the results for a simplified version of model
I in which the country random effect is omitted. The estimates are very close to the
ones of model I. However, the standard errors are consistently biased downward, leading
to erroneous conclusions on the significance of the parameters. This result highlights
the importance of using a multilevel strategy to model the clustering of ratifications
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within the same country and also shows that, despite most of the heterogeneity lies at
the treaty level, the country effect needs to be included in the analysis. Our model
assumes normality at the treaty and country levels. This property is inspected in Figure
4 where the cumulative distribution of the treaty and country residuals are plotted
against a cumulative normal distribution. If the residuals were distributed as a perfect
normal distribution the plots would lie along the diagonal line. We observe that both
the country and the treaty effects follow very closely the diagonal line suggesting that
they are approximately normally distributed.

Overall the results are stable and consistent with what is found in the main results
of our study. The findings are unaffected by changes in the definitions of lobbying and
quality of institutions. Different proxies are experimented leading to similar conclusions.
We also experiment with different specifications of the model. The results obtained with
a non-parametric baseline hazard, a different link function and a different multilevel
specification, are all similar to those in Model I.
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